Dynamic Functional Principal Components
نویسندگان
چکیده
In this paper, we address the problem of dimension reduction for sequentially observed functional data (X k : k ∈ Z). Such functional time series arise frequently, e.g., when a continuous time process is segmented into some smaller natural units, such as days. Then each X k represents one intraday curve. We argue that functional principal component analysis (FPCA), though a key technique in the field and a benchmark for any competitor, does not provide an adequate dimension reduction in a time series setting. FPCA is a static procedure which ignores valuable information in the serial dependence of the functional data. Therefore, inspired by Brillinger's theory of dynamic principal components, we propose a dynamic version of FPCA which is based on a frequency domain approach. By means of a simulation study and an empirical illustration, we show the considerable improvement our method entails when compared to the usual (static) procedure. While the main part of the article outlines the ideas and the implementation of dynamic FPCA for functional X k , we provide in the appendices a rigorous theory for general Hilbertian data.
منابع مشابه
Persian Handwriting Analysis Using Functional Principal Components
Principal components analysis is a well-known statistical method in dealing with large dependent data sets. It is also used in functional data for both purposes of data reduction as well as variation representation. On the other hand "handwriting" is one of the objects, studied in various statistical fields like pattern recognition and shape analysis. Considering time as the argument,...
متن کاملOn convergence of sample and population Hilbertian functional principal components
In this article we consider the sequences of sample and population covariance operators for a sequence of arrays of Hilbertian random elements. Then under the assumptions that sequences of the covariance operators norm are uniformly bounded and the sequences of the principal component scores are uniformly sumable, we prove that the convergence of the sequences of covariance operators would impl...
متن کاملFunctional Analysis of Iranian Temperature and Precipitation by Using Functional Principal Components Analysis
Extended Abstract. When data are in the form of continuous functions, they may challenge classical methods of data analysis based on arguments in finite dimensional spaces, and therefore need theoretical justification. Infinite dimensionality of spaces that data belong to, leads to major statistical methodologies and new insights for analyzing them, which is called functional data analysis (FDA...
متن کاملDynamic anomaly detection by using incremental approximate PCA in AODV-based MANETs
Mobile Ad-hoc Networks (MANETs) by contrast of other networks have more vulnerability because of having nature properties such as dynamic topology and no infrastructure. Therefore, a considerable challenge for these networks, is a method expansion that to be able to specify anomalies with high accuracy at network dynamic topology alternation. In this paper, two methods proposed for dynamic anom...
متن کاملAsymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data
Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...
متن کامل